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Abstract The burning of a sheet of cellulose-based

material, such as paper or cloth, involves uneven shrink-

age which causes wrinkling. We simulate this geomet-

rically complicated phenomenon by modeling the ef-

fects of heat transfer, shrinkage and partial ablation

on a thin shell. A strain-limitation technique is ap-

plied to a two-layer structure of springs arranged as a

body-centered square. Although this structure is over-

constrained, convergence can be achieved using a new

successive fast projection method. We also re-mesh the

shells dynamically to deal with the topological changes

that occur as regions burn away.

Keywords Constrained Lagrangian mechanics · Fast

projection · The body-centered square · Heat transfer

1 Introduction

Heat changes the shape of solid objects by altering the

material’s physical and chemical state and properties.

During combustion, a portion of material rapidly de-

composes into gases. The residual solid is an ash which

has different mass and density, causing shrinkage; as a

result, the shell bends, crumples and tears, generating

distinctive wrinkles.
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Fig. 1 Simulation of burning paper. We simulate a temper-
ature higher than the ignition point, and weight the rate of
mass loss rate using the texture shown. As the mass of the
paper falls, the paper crumples and wrinkles appear.

Shells made of common combustible materials, such

as cloth and paper, rarely stretch or compress in the

plane of the shell, but easily bend. This property is

called developability. When compressive forces are ap-

plied in the plane of a thin shell, it buckles but main-

tains its surface area. As a shell burns, mass is not lost

evenly and the differential shrinkage in adjacent regions

causes stresses; even though, there are no external force.

But the effect is the same: the shell curves to reach equi-

librium.
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Recent research on the simulation of burning shells

has attempted to capture these complicated deforma-

tions. Losasso et al. [15] simulated melting and burn-

ing objects by tracing the changing surface of the re-

maining solid region. Their results are only plausible

superficially, because the deformations of burnt regions

caused by shrinkage of the solid are not incorporated

into their simulation. Later, Melek et al. [16] and Liu

et al. [14] introduced deformation techniques to bend

and crumple thin shells. However, their free-form de-

formation (FFD) method and the mass-spring systems

produce simply curved shapes without the fine detail

seen in reality, because these approaches do not fully

enforce the inextensibility of thin shells.

We propose a method of simulating the bending,

crumpling and wrinkling of burning shells by integrat-

ing simulations of heat transfer and the structure of

developable surface. In order to produce fine wrinkles,

it is necessary to model the internal dynamics of thin

shells accurately. Inspired by the linear beam geome-

try which is used to explain the bending of shells, we

propose a double-layer shell model with finite thick-

ness based on a body-centered square configuration of

springs. This structure enables us to control the stretch-

ing and bending of thin shells by using the springs to

limit the strain.

This requires a robust method for determining the

extensions of a network of springs. We initially tried

to utilize the fast projection method. This is a power-

ful approach to limiting strain which is based on con-

strained Lagrangian mechanics. However, when applied

to our proposed shell structure, fast projection diverges

because the structure is overly constrained and the gra-

dient of the spring constraints are linearly dependent.

To avoid this, we break up the constraints into sets to

satisfy convergence conditions and which we can project

successively.

We determine the extension of each spring by con-

sidering the reduction in mass and density which occurs

in regions which are burning because the temperature

exceeds the ignition point. Different rates between ad-

jacent regions, and the two layers of our shell model,

buckle the shell. This approach is more physically plau-

sible and produces more satisfyingly complicated wrin-

kles then existing methods, which simply relate bending

to differences in temperature. To support our approach,

we also provide a remeshing technique to account for

the topological changes produced by burning.

We will review related work in the next section. In

Section 3 we introduce our double-layer shell config-

uration. In Section 4, we present on the overview of

heat transfer simulation process that we use to model

shell deformation. In Sections 5, 6 and 7, we succes-

sively describe this heat transfer, the changes of mate-

rial properties that occur during combustion and the

shell dynamics. Simulation results, details of the imple-

mentations, and a discussion of the limitations of our

approach follow in Section 8. Finally, we conclude in

Section 9.

2 Related Work

Focusing on the generation of wrinkles in burning shells,

we will briefly review work on the deformation of solid

objects related to heat transfer and developable shells.

Terzopoulos et al. [21] adopted particle-spring sys-

tems to discretize 3D volumes and models phase changes

in melting solids by controlling the stiffness of springs.

Carlson et al. [5] simulated the melting of solids, but

they adjusted viscosity within a fluid dynamics simula-

tion. Their grid-based representation straightforwardly

handles fluid flows and topological changes. Losasso et

al. [15] detected the boundary of the remaining solid

in burning or melting by embedding these solids within

a body-centered cubic lattice and then extracting the

boundary of the solid by evaluating level-set values at

lattice points.

Melek et al. [16] looked at the bending and crum-

pling of a burning object during combustion, and pre-

sented a deformation method to simulate it in real time.

The burning object is encompassed by a low-resolution

grid which is subjected to free-form deformations. Liu

et al. [14] also deformed thin shells indirectly by mod-

ifying an enclosing lattice. However, they modeled the

crumpling forces induced by differences in temperature

in lattice points on either side of the shell instead of

using geometric deformation.

A realistic simulation of thin shells is feasible if its

internal dynamics can be accurately modeled. Early

seminal works on cloth simulation [20,1] regarded thin

shells as elastic, but an elastic shell shrinks and loses

detail when compressive forces are applied in its plane.

Moreover, displacements from the rest shape cause an

elastic shell to produce large restoring forces which re-

duce numerical stability. The more accurate implicit

[1], semi-implicit [4] and BDF2 [6] integration methods

have been proposed to improve convergence. Neverthe-

less, methods based on potential energy still produce

unrealistically smooth results which motivate more ag-

gressive methods of strain limitation.

Provot [19] limited the deformation rate of springs

to 10% of their rest lengths, and shrank locally elon-

gated springs iteratively until they are within this limit.

Müller et al. [18] enforced length constraints on springs

by projecting two points into the line of action of a



Shrinkage, Wrinkling and Ablation of Burning Cloth and Paper 3

spring until they reach valid positions. Constraint-based

methods have been successfully used to simulate quasi-

inextensible cloth by enforcing global constraints. En-

forcing implicit constraints [13] provide more stable con-

vergence and allows the use of a larger time-step than

the explicit method. Fast projection [11] is a linearl-

ized implicit integration which converges much more

quickly than implicit methods, but still keeps strain

under 0.1%. English and Bridson [9] adopted fast pro-

jection and BDF2 to maintain the rest lengths of edges

in a new non-conforming discretization which prevents

spurious bending forces which imparts spurious stiffness

to shells.

An explicit model of bending is indispensible in the

realistic simulation of wrinkles in thin shells. Early cloth

simulations [1,4,12] simply controlled bending forces in

terms of the angles between adjacent faces. Thomaszweski

and Wacker [22] introduced a physically more accu-

rate non-linear bending model which accounts for cur-

vatures. Later, the linear [23], quadratic [3] and cubic

polynomial [10] approximate bending models were in-

troduced to improve performance and controllability.

The bending models of Grinspun et al. [12] and Brid-

son et al. [4] use non-zero rest angles to preserve the

curved and wrinkled rest shape of cloth while respond-

ing to collisions. The constraint-based approach [7] in-

troduces hard angle constraints which allow a shell with

sharp creases to be modeled.

3 The shell configuration

Existing cloth simulations use independent stretching

and bending models because thin shells are developable.

However, the stretching forces caused by uneven shrink-

age in the plane of shell generate wrinkles, motivat-

ing us to control all internal dynamics using a unified

model.

In this section, we first clarify the principle of bend-

ing with the linear beam element, and then explain how

both bending and stretching of thin shells can be man-

aged by in-plane tensile and compressive forces. Then

we propose a particle-spring system in which a body-

centered square defines two layers and finite thickness,

based on the beam model.

3.1 The linear beam element

Thomaszewski and Wacker [22] explained the bending

of thin shells in terms of the geometry of a simple beam

(Figure 2(a)) which corresponds to the classical beam

element. This beam geometry has a neutral axis (green

lines), top and bottom layers (blue lines), and a finite

Fig. 2 (a) The linear beam geometry, and (b) and our BCS
shell, shown diagrammatically in 2D. The two layers and the
normals connecting them correspond to the blue, green and
red springs respectively. When the top layer shrinks and the
blue springs contract, (c) the beam geometry and (b) our
shell both curve.

thickness spanned by normal lines (red lines). Based

on the Kirchhoff-Love Assumptions, the lengths of the

neutral axis and the normal lines do not change, the

whereas top and bottom layers stretch or shrink in re-

sponse to the tensile and compressive stresses which

occur when the neutral axis of the loaded geometry as-

sumes a curved shape (Figure 2(c)).

Applying the beam geometry to a shell, we see that

the restoring forces in the plane of the shell correspond

to bending forces exerted on the neutral axis of a beam.

Stretched or compressed layers tend to be returned to

their rest states by the restoring forces, the neutral axis

restores flat. If a beam is extremely stiff, it tends to re-

main rigid, whereas flexible material such as cloth has a

low stiffness. Therefore it is possible to control inexten-

sibility and bending stiffness by applying only stretch-

ing forces to the neutral axis and the top layer (we can

disregard the bottom layer, since it is dependent on the

top layer).

A combined model which accounts for both stretch-

ing and bending is more appropriate for generating re-

alistic wrinkles on thin shells for two reasons: First,

maintaining the rest curvature of a stiff shell or forc-

ing that shell to bend require large forces which make

the simulation unstable. The implicit method [1] offers

a solution to this problem, but implicit integration of

a non-linear bending model is tricky because the gra-

dient of the formula is difficult to calculate. Second,

the bending of thin shells during burning is not caused

by differences in temperature [16,14], but by shrink-

age caused by changes of mass and density. The use

of bending model requires an additional formula to re-

late the amount of shrinkage to the curvature of the

shell, whereas our model bends as implicitly one layer

shrinks.

A thin shell with two layers is not an approach that

has been generally applied to cloth simulation, but it

has already been used in [16,14] to model burning ob-

ject. A thin shell can be embedded in a 3D lattice and

then the lattice as deformed in response to differences

in temperature between adjacent nodes in the struc-
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Fig. 3 The double-layer shell configuration with thickness,
based on the body-centered square. The structure consists of
four independent quadrilateral meshes: red, blue, green and
yellow.

ture. This approach involves the assumption that the

bending of thin shells is caused by the temperature dif-

ference between the top and bottom layers.

3.2 A double-layered shell based on the body-centered

square

The body-centered square (BCS) is two-dimensional

analog of the BCC lattice, which is commonly found in

stable molecular or crystal structures. Its uniform point

distribution, symmetry and stability have caused it to

be used for many applications in computer graphics,

including tetrehedralization [17], 3D volume deforma-

tions [17], and shell simulations [15].

The BCS consists of a set of rectangular cells, each

of which has a lattice point at its center and four more

points at its corners (Figure 3(a)). We can create four
types of spring which connect the lattice and corner

points, and we can associate each type of spring with

a color: red, green, blue and yellow (Figure 3(c)), fol-

lowing Molino et al. [17] The green and blue orthogonal

springs, SG and SB , correspond to the top and bottom

surface of the linear beam model; the red intermediate

springs, SR, stitch the two layers together diagonally

to maintain adjacency and thickness; and the yellow

springs, SY , link the two diagonal corner points of a

unit cell to control shearing. Since the lattice points

and corner points are in the same plane, the result-

ing spring structure is still a 2D manifold mesh (Figure

3(b)). Therefore, we offset the lattice points from the

plane of the rest shell to create a shell of finite thickness

(Figure 3(d)).

All the springs are used in modeling the dynamics

of the shell, but only the quadrilateral mesh of blue

springs is required for rendering. This mesh can easily

be converted to as an isotropic triangular mesh. How-

ever, because our shell has thickness, the lattice points

are no longer in the same plane as the corner points.

Therefore, we replace each lattice point with a virtual

center point, which is placed at the average position

of the four corner points, and update its position after

computing the dynamics of the shell. The resulting tri-

angular mesh is used for collision detections as well as

rendering.

4 Simulation Overview

We construct a particle-spring system using the body-

centered square structure. A shell consists of a set of

particles P, and four sets of springs SR, SG, SB and

SY . A particle pi has physical attributes, including a

position xi, a velocity vi, a mass mi, and a temperature

Ti at its position. A spring sj connects two end particles

p0 and p1. The length l of a spring in the rest state is

called the target length.

At each time step n, the attributes of particles and

springs are updated in the following order:

1. The temperatures Tn of particles is determined by

simulating the heat transfer.

2. The masses mn of particles at temperatures higher

than the ignition point are reduced.

3. The particle-spring structure and the rendering mesh

are remeshed to account for the deleted particles

and springs.

4. The positions xn and velocity vn of particles are

determined by simulating the shell dynamics and

interactions with the environment.

5 Heat Transfer

A burning shell receives heat from its environment by

convection and radiation, produces its own heat through

combustion, and is conducted through and along the

shell. Incorporating fire simulations into our system could

enhance the realism of burning scenes, since changing

flame shapes produce natural variations in temperature

across burning shells. However, we use simpler external

heat sources, such as heat balls (Figure 1 and 11) and

heat textures (Figure 4). We express the change in tem-

perature produced by these heat sources as Text. Addi-

tionally, when the temperatures of particles exceeds the

ignition point, the temperature rises move quickly due

to the reduced mass and the ratio of heat to mass, µ.

As a result of all this, the temperature of the particles

can be expressed as follows:

Tn = Tn−1 + Text + η∆mn−1. (1)
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Fig. 4 Comparisons of the results of various burning effects
when a very hot sphere passes across thin shells: (a) boundary
change only; (b) shrinkage; (c) boundary change and shrink-
age; and (d) using a texture to adjust the rate of mass loss.

We also simulate the conduction of heat over the

shell. Physically accurate diffusion can be obtained by

solving the heat equation.

∂Tn

∂t
= α∇2, (2)

where α is thermal diffusivity.

To solve the heat equation for our particle-spring

structure, we use the method of Desbrun et al.[8], which

approximates the Laplacian by umbrella operators. Since

the spring lengths in our model are not identical and are

changed by burning, we need to consider them as pa-

rameters in the heat equation. We used a scale-dependent

umbrella operator which weights the Laplacian by the

inverse of the distance dij between two particles pi and

pj .

L(xi) =
2

E

∑
j∈N1(i)

xj − xi

|dij |
, where E =

∑
j∈N1(i)

|dij |,(3)

and N1(i) are the 1-ring neighbors of particle i. This

enables the uniform transfer of heat across irregular

meshes. By using the implicit backward Euler method

we can have longer time-steps and higher thermal diffu-

sivity, α, in a stable simulation of heat diffusion. Best of

all, the diffusion of heat is unrelated to the structure of

the shell, whereas the explicit method can only transfer

heat from a particle to its neighbors.

6 Adjusting Target Lengths and Remeshing

A burning shell shrinks and the boundary of the re-

maining regions changes. We model this phenomenon

by shortening springs and updating the connectivity

of the particle-spring system depending on the mass

change.

During combustion, the initial mass minit
i of a par-

ticle i decreases by chemical processes when the tem-

perature Tn
i is higher than the ignition point T ignition.

The reduced mass of the particle at time-step n can be

expressed as follows:

∆mn
i = −µhminit

i (Tn
i − T ignition), (4)

where µ is the rate at which the mass decreases.

The mass at which a particle starts to disappear is

mloss, and mmin as the minimum mass that a particle

can have. When mloss is close to minit, then the shell

burns out quickly; but if mloss is less than mmin, the

shell wrinkles but remains intact. If the initial masses

of two particles p0 and p1 connected by a spring j are

m0 and m1, and their relative masses during burning

are m′0 = m0−mloss and m′1 = m0−mloss, then we can

clarify the states of their connecting spring as follows:

1. Shrunk : m′0 ≥ 0 and m′1 ≥ 0

2. Partly burnt : m′0m
′
1 < 0

3. Burnt : m′0 < and m′1 < 0

The shrinkage of a spring is proportional to the

change in mass and density of the two particles which

it connects. Since volume is equal to mass over density,

the volume of a particle pi changes from minit
i /ρiniti to

mi/ρi, where ρiniti and ρi are the densities of the initial

and burnt material. We can now calculate the propor-

tional loss in volume of the ratio of a particle υi as

follows:

υi =
mi/ρi

minit
i /ρiniti

(0 ≤ υi ≤ 1). (5)

If the proportional loss in volume of the two particles

at the ends of spring j are υ0 and υ1, and linitj is the

initial length, of the spring, then its new target length

lj is determined as follows:

lj = lrestj (υ0 + υ1)/2. (6)

When particles are completely burnt out (m′i < 0),

they can be removed from the structure, and then we

remesh the particle-spring system. Since the abrupt dis-

appearance of particles would lead to aliasing during

the rendering of our lattice-based shell, we interpolate

smoothly varying boundaries for the remaining regions

using the technique proposed by Losasso et al. [15]:

level-set values are maintained at lattice points and the

structure is remeshed using marching triangles.
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Fig. 5 The states of springs with respect to m′0 and m′1.

Fig. 6 Four cases of a triangle in marching triangles, de-
pending on the unburnt mass.

A partly burnt spring (m′0m
′
1 < 0) is divided into

burnt and unburnt regions by an intermediate point

xmid, determined by linear interpolation between x0

and x1:

xmid = x0(1− t) + x1t, where t =
m′0

m′0 −m′1
. (7)

Figure 5 presents five examples which show how the

state of a spring is changed by the masses of two par-

ticles that it converts. In cases (a) and (b), the spring

only shrinks since both m′0 and m′1 are positive, and the

proportional changes in length are 87.5% and 62.5%.

The springs in (c) and (d) have already been shorten as

much as 57.5% and 50% of their initial lengths, because

they are partly burnt. In case (e), the spring is burnt

out.

When the particles and springs have been updated,

we remesh the particle-spring structure and the render-

ing mesh. Each triangle of the rendering mesh has one

of four states, depending on the number of the parti-

cles remaining. A triangle is left in the rendering mesh

if at least one of the particles that it connects positive

relative mass, and then we remesh the remaining par-

ticles using marching triangles. If both triangles that

share a spring disappear, we remove that spring from

the system.

7 Shell Dynamics

Given the positions xn and velocities vn of particles

at the beginning of time-step n, we first integrate the

external forces Fext, such as gravity, using the forward

Euler method:

ṽn = vn + hFext (8)

x̃n = xn + ṽn. (9)

Since our simulation of the internal dynamics, stretch-

ing, shearing and bending of shell relies on the strain

in the particle-spring systems, adopting a proper strain

limiting method is critical. We prefer the fast projection

method [11] based on constrained Lagrangian mechan-

ics, because it converges quickly to the target length.

If xa and xb are the two end-points of a spring and

l is its target length, then a constraint that preserves

the spring length and its gradient can be expressed as

follows:

C(xa,xb) =
||xa − xb||2

l
− l = 0 (10)

∇Cxa(xa,xb) = 2(xa − xb)/l. (11)

Spring lengths that are changed by heat transfer

may violate the spring constraints. Then the uncon-

strained positions x̃n are moved to the positions x̂n,

which satisfy the constraint, by fast projection (this

is explained in more detail in Section 7.1). The con-

strained velocity v̂n is obtained from the displacements

during time-step h.:

x̂n = fast projection(x̃n) (12)

v̂n = ṽn + (x̂n − x̃n)/h. (13)

Finally we correct the positions and velocities to

avoid intersections with other objects and self-collision

to obtain the final results:

xn+1 = position correction(x̂n) (14)

vn+1 = velocity correction(v̂n). (15)

Performing collision detection after fast projection

could violate the constraints. But if the order of these

processes is reverted, the shell could intersect other

objects. Collisions with simple primitivies: such as a

sphere or plane, are detected at each projection step,

and the positions and velocities of particles are cor-

rected to avoid the collision.

7.1 Successive Fast Projection

Fast projection [11] progressively projects points on to

the closer manifold until they approach a constraint

manifold C(x) = 0 within some threshold. At each pro-

jection step j, the unconstrained point xn
j is moved by

Newton’s method in the direction of negative gradient

of the constraint, which is expressed by the Lagrange
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multiplier −∇C(xn
j )λj+1. The position of xn+1

j after a

projection step j is determined by solving the following

linear system with respect to λj+1:(
∇C(xj)∇C(xj)

T
)
λj+1 = C(xj). (16)

Each displacement is then updated in turn:

xn+1
j = xn

j −∇C(xn
j )λj+1. (17)

We represent this projection process at step j as a

function of S, which is the set of springs on to which

we wish to enforce the constraint:

xn
j+1 = project(xn

j ,S). (18)

The numerical stability of the fast projection method

mainly depends on the characteristics of the linear sys-

tem (16). To guarantee convergence, the matrix in Eq.(16),

a multiplication of the constraint gradient matrix and

its transpose matrix, should be positive definite. The

system will converge stably if the constraint gradients

are linearly independent and the matrix is full-ranked.

The ratio of the number of constraints to the number

of positional DOFs of the particles is an additional con-

cern. A ratio of more than 1 prevents a solution. For

example, the average ratios of a quadrilateral or trian-

gular mesh are 2/3 or 1, making these structures stable.

Unfortunately, the BCS does not meet these two

requirements. First, the constraint gradients of the di-

agonal springs are linear combinations of those of the

orthogonal springs which share the same particle; and

so, the system matrix suffers from rank deficiency. In

addition, if Nc is the total number of cells, the average

sizes of the four constraint sets, SR, SG, SB and SY ,

are 4Nc, 2Nc, 2Nc and 2Nc; and the number of DOFs

of corner and lattice particles are 3Nc and 3Nc respec-

tively. This makes the ratio of the number of constraints

to the number of positional DOFs is 10:6, which is more

than 1.

Our solution is to divide the constraints into sub-

sets, each of which satisfies the convergence conditions,

and solve them sequentially. We can create appropriate

subsets by taking the springs of each color; the springs

of each type constitute a network with the same topol-

ogy as the orthogonal quadrilateral mesh used in previ-

ous techniques [11,9]. There are four spring colors, giv-

ing us four constraints to apply successively. We achieve

this using a fast projection step j consisting of four sub-

sequences. The points xj(=xn
j ) input to the projection

step j, are moved closer to the constraint CR of the

spring set SR. The resulting points xR
j are then pro-

jected on to the manifold CG. This is the first of four

projections:

Fig. 7 Our robust strain-limiting method preserves the rest
shape of thin shells and the details of wrinkles produced by
shrinkage. In (a) and (b), a torus has fallen on a sphere whose
radius is 1.2 times bigger than hole in the torus. In (b), the
torus simulated by the mass-spring system passes the sphere
and contacts ground plane since it does not preserve the tar-
get length. In (c) and (d), the whole thin shell shrinks uni-
formly, but only the shell simulated by our method (c) creates
complicated wrinkles, whereas the shell in (d) loses its details.

Fig. 8 Errors in ||C(x)|| of all types of spring and their sum.
The total error (gray curve) decreases during successive fast
projection.

xR
j = project(xj ,S

R)

xG
j = project(xR

j ,S
G)

xB
j = project(xG

j ,S
B)

xj+1 = project(xB
j ,S

Y )

This completes projection step j. The graphs in Fig-

ure 8 show how the constraint errors ||C(x)|| change

through successive projection steps proceed. We see

that the projection of one constraint set may increase

the error of the other sets, but the sum of all the con-

straints always decrease.
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Fig. 9 Convergence of two mutually exclusive springs which
share a point.

Table 1 Positions of the unconstrained particle at each pro-
jection step j.

projection step j project(SG) project(SB)

input 0.0 0.0
1 0.4306 0.4401
2 0.5527 0.4954
3 0.5767 0.5038
4 0.5804 0.5050
5 0.5810 0.5052 (output)

We experimented to see whether a point would con-

verge at a stable location if two independent spring con-

straints are applied to it. Figure 9(a) shows how two

types of springs, green and blue, are connected to the

particle p, and the other points are fixed. When the

target lengths of the two springs are changed from 1

to 1.65 and 0.55, they compete to assume their new

lengths. Vibrations occurs, but the system quickly con-

verges to an equilibrium point, as shown in Figure 9(b).

7.2 Weighted constraints

The stiffness of an elastic body depends on its material

properties. Even though the constraint C(x) does not

use the material stiffness as a parameter, we can obtain

the same effect by relaxing the spring constraints.

Each projection in Eq.(18) is equivalent to a step in

Newton’s method. As the slope of the gradient ∇C(xj),

increases, the variable xj converges more slowly. If w is

the weight applied to a spring, we divide the displace-

ment by the spring weight to produce a weighted dis-

placement −∇C(xn
j )λj+1/w which leads to the modi-

fied linear system:(
∇C(xj)∇C(xj)

T
)
λj+1 = WC(xj), (19)

where W is a diagonal matrix which contains the weights

of all springs. Figure 10 shows how we can adjust the

weights of the blue and yellow springs to obtain a flex-

ible shell. It is also possible to obtain a shell which has

inhomogeneous bending stiffness by assigning different

weights to the springs in each subset.

Fig. 10 Different types of thin shells produced by adjusting
the weights of springs and the thickness of the shell. The ratio
of the thickness of each shell to the length of its longest side
and the weight for blue and yellow springs are (a) 1:20 and
1.0, (b)1:80 and 1.0, (c) 1:400 and 1.0 and (d) 1:400 and 0.1.

8 Results

We tested our shell structure using external heat sources.

We assigned an initial temperature to a shell (Figure

1) and then introduced moving spheres of high tem-

perature (Figure 4 and 11). The burning process and

its randomness were controlled by adjusting the rate of

mass loss µ, and the thermal diffusivity α, by applying

a texture. We used the texture colors c ∈ [0, 1] at the

uv coordinates to weight the simulation parameters of

each particle. The textures we used can be found with

the simulation results.

Figure 1 shows a simulation of burning paper. We

set the initial temperature higher than the ignition point

of the paper, and varied the rate of mass loss using the

shown texture. The partly burnt regions bend because

of the loss of mass, but interior regions where the ini-

tial mass still remains also wrinkle due to the bending

of the boundaries. In Figure 4, a hot sphere is passed

across a thin shell whose two corners are fixed. As a

result, the shell separates into two parts. We simulated

the same scene with the addition of topological changes

and shrinkage. Figure 4(a) shows a shell which only

changes its connectivity [15]. As we apply more effects,

the simulation results become more detailed and realis-

tic. Figure 4(d), shows the results of changing the rate

of mass loss µ using a texture to produce a tearing ef-

fect. A BCS based shell can be derived from any quadri-

lateral mesh: in Figure 11, we simulated heat transfer

and shrinkage of a toroidal shell.

We verified our strain-limiting method by compar-

ing results produced by a mass-spring model, based

on Hooke’s law, with those from successive fast pro-
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Fig. 11 Snapshots of an animation of a burning torus.

jection. Figure 9(a) and (b) show a torus falling on

a sphere. The inner diameter of the torus is smaller

than the sphere, and so the torus is supposed to re-

main on the sphere. However, the torus in Figure 9(b)

has passed over the sphere and fallen to the ground, be-

cause the mass-spring model cannot preserve the strains

of springs, and allows the torus to stretch. Conversely,

the torus simulated by our method maintains its rest

shape and bounces against the sphere. In the second

example, in Figure 9 (c) and (d), we made the blue

springs of the shell shrink by reducing the masses of

the corner particles uniformly. Since the blue and green

springs contract at different rates, realistic wrinkles ap-

pear in our simulation result (c). However, the shell in

(d) lost its details, because the springs constrained by

the masses and springs simply extend or compress.

8.1 Computation times

The simulation of shell dynamics takes most of the com-

putation time, because it involves the solution of a lin-

ear system with the conjugate gradient method at each

projection step j and time-step n. The bottleneck in

this solution process is the matrix-vector multiplica-

tion in the conjugate gradient method. To speed up the

computation, we compressed the matrix into the ELL-

PACK format [2], which separates values from indices.

This reduces size of the matrix from N2
s to NsNn, where

Ns is the number of springs and Nn is the maximum

number of neighbors of a spring. Our shell structure

can make good use of this format, because each spring

set is a quadrilateral mesh and the number of neighbors

of each spring is fixed (Ns =7). Using the ELLPACK

structure, the computation time is linearly proportional

to the number of springs. Table 2 shows computation

times against the number of springs.

Table 2 Computation times for thin shells with different
numbers of springs. The time-step h, the maximum num-
bers of iterations, and the threshold of the fast projection are
0.002, 7 and 10−7. The computation times and the number
of springs are linearly proportional to each other. These tests
were performed on the quad-core machine with 4GB of mem-
ory. (a) The number of springs, (b) the computation time
(ms) with convergence conditions, (c) the computation time
(ms) without convergence conditions (simulations fully iter-
ate), (d) the average computation time per spring ((c)/(a)).

(a) (b) (c) (c)/(a)

1,000 6.50 142.46 0.142
4,000 27.93 362.69 0.090

16,000 159.17 1268.00 0.079
25,000 211.67 1877.92 0.075
10,000 1045.02 7412.92 0.074

8.2 Limitations

Successive fast projection is based upon the premise

that each spring-set is a stable quadrilateral structure.

If a spring-set contains points with more than six neigh-

bors, then the simulation does not converge. Therefore

it is not straightforward to apply our method to adap-

tive BCS, BCC or irregular meshes.

Ashes in burnt regions are easily torn and broken.

We simulate this effect by reducing mass more quickly

where we want the shell to break, as shown in Figure

1. However this phenomenon is not only caused by loss

of mass. When two adjacent regions shrink at different

rates, the region which shrinks more slowly prevents

the other region from shrinking at its own speed. This

creates tensile stresses in the more quickly shrinking re-

gion. If the tensile force is larger than the strength of

the material left in this region, the shell tears. How-

ever, we did not model this effect, and so our examples

exhibit too many wrinkles and too few tears.

The proposed shell structure maintains its thickness

using only red springs. Therefore, the rapid application

of a large force will make the point on one layer move

into the other layer. Since we do not explicitly correct

the orientation of springs, the points in the other layer

remain fixed because of the red springs producing sharp

crease in the shell. This problem can be fixed by colli-

sion detection, but we do not because it helps to create

complicated wrinkles on the shell.

9 Conclusions

We generate realistic fine wrinkles on a burning shell

using a new shell structure and a method of strain-

limitation. A two-layered shell with thickness is cre-

ated with a body-centered square (BCS) structure, and
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this shell will wrinkle in response to stresses produced

by the change in material properties that occur during

burning. During successive fast projection, we deal with

subsets of the springs individually, allowing our over-

constrained structure to converge. Remeshing burnt re-

gions and setting parameters using textures improves

the reality of our simulation.
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Fig. 12 Simulation of burning paper.


